Docker
Conduktor Gateway is provided as a Docker image and Helm chart.
It should be deployed and managed in the best way for your organization and use case(s). This could be a single container, or more likely, multiple Gateway instances should be deployed and scaled to meet your needs. Optionally, the instances could be deployed behind a load balancer.
Use this quick start guide to help you get started.
Jump to:
Running the Gateway
For a fully self-contained quick-start, see the Docker Compose.
In its simplest form, Gateway can be run from a simple Docker run command with the credentials to connect to your existing Kafka cluster.
Start a local Kafka
Create a new directory (note the docker network will be derived from the directory name):
mkdir gateway-quick-start && cd gateway-quick-start
Run the below command to start a single node Kafka and ZooKeeper:
curl -L https://releases.conduktor.io/single-kafka -o docker-compose.yml && docker compose up -d
Start Conduktor Gateway
Run the below command to start Conduktor Gateway and configure Docker networking between the two containers:
docker run \
--network gateway-quick-start_default \
-e KAFKA_BOOTSTRAP_SERVERS=kafka1:29092 \
-e GATEWAY_ADVERTISED_HOST=localhost \
-e GATEWAY_PORT_START=9099 \
-p 9099:9099 \
-d \
conduktor/conduktor-gateway:3.5.1
By default, the Gateway uses port-based routing and listens on as many ports as there are Kafka brokers. In this case, we started a single-node Kafka cluster and opened 1 port.
At this stage you have:
- Kafka running and its brokers available on
localhost:9092
- Gateway acting as a proxy to the backing Kafka cluster, accessible at
loalhost:9099
Connecting your clients
Your clients can now interact with Conduktor Gateway like any other Kafka cluster.
Example: creating a topic via Gateway using the Apache Kafka command line client:
bin/kafka-topics.sh --create --topic orders --bootstrap-server localhost:9099
Next Steps
This quick start shows the basics, demonstrating Conduktor Gateway acting as a network proxy for Kafka. However, the real value comes with configuring interceptors, which are pluggable components that augment Kafka by intercepting specific requests of the Kafka protocol and applying operations to it.
View demos that demonstrate how interceptors are used to satisfy specific use cases such as encryption, data quality and safeguarding your cluster with technical and business rules.
Connecting to secured Kafka
Your Kafka's bootstrap server, along with its authentication method should be configured using environment variables.
Conduktor Gateway connects to Kafka just like any other client.
- Environment variables prefixed by
KAFKA_
dictate the connection between Gateway and the backing Kafka cluster. - Environment variables prefixed by
GATEWAY_
dictate the connection between clients and the Gateway.
Security configurations are provided using this scheme. For example:
ssl.truststore.location
becomes:
KAFKA_SSL_TRUSTSTORE_LOCATION
Confluent Cloud Example
Below shows the most simple way to get started with Confluent Cloud.
By default, Gateway assumes you want the same security protocol between your clients and Gateway, as between your Gateway and Kafka.
However, this example uses DELEGATED_SASL_PLAINTEXT
for the GATEWAY_SECURITY_PROTOCOL
. For quick start purposes, this avoids needing to configure SSL certificates when connecting to Conduktor Gateway.
docker run \
-e KAFKA_BOOTSTRAP_SERVERS=$CONFLUENT_CLOUD_KAFKA_BOOTSTRAP_SERVER \
-e KAFKA_SASL_MECHANISM=PLAIN \
-e KAFKA_SECURITY_PROTOCOL=SASL_SSL \
-e KAFKA_SASL_JAAS_CONFIG='org.apache.kafka.common.security.plain.PlainLoginModule required username="$CONFLUENT_CLOUD_API_KEY" password="$CONFLUENT_CLOUD_API_SECRET' \
-e GATEWAY_SECURITY_PROTOCOL=DELEGATED_SASL_PLAINTEXT \
-e GATEWAY_ADVERTISED_HOST=localhost \
-e GATEWAY_CLUSTER_ID=test \
-p 6969-6999:6969-6999 \
-d \
conduktor/conduktor-gateway:3.5.1
Note that if you wish to maintain the SSL/TLS connection between clients and Conduktor Gateway, see Client to Gateway Configuration.
By default, the Gateway uses port-based routing and listens on as many ports as there are Kafka brokers. In this case, we open 30 ports to account for Confluent Cloud clusters with many brokers. However, you may need to open more ports depending on the size of your cluster.
If you need support with your configuration, please contact us for support.
Docker Compose
The below example demonstrates an environment consisting of:
- Zookeeper and a 3-node Kafka cluster
- Schema registry
- Conduktor Gateway using delegated authentication
- Kafka client
- Command
- File Content
cat docker-compose.yaml
# Gateway Quick Start
# Docker Compose
version: '3.7'
services:
zookeeper:
image: confluentinc/cp-zookeeper:latest
hostname: zookeeper
container_name: zookeeper
environment:
ZOOKEEPER_CLIENT_PORT: 2801
ZOOKEEPER_TICK_TIME: 2000
healthcheck:
test: nc -zv 0.0.0.0 2801 || exit 1
interval: 5s
retries: 25
labels:
tag: conduktor
kafka1:
hostname: kafka1
container_name: kafka1
image: confluentinc/cp-kafka:latest
ports:
- 19092:19092
environment:
KAFKA_BROKER_ID: 1
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2801
KAFKA_LISTENERS: INTERNAL://:9092,EXTERNAL_SAME_HOST://:19092
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka1:9092,EXTERNAL_SAME_HOST://localhost:19092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL_SAME_HOST:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
KAFKA_LOG4J_LOGGERS: kafka.authorizer.logger=INFO
KAFKA_LOG4J_ROOT_LOGLEVEL: WARN
KAFKA_AUTO_CREATE_TOPICS_ENABLE: false
depends_on:
zookeeper:
condition: service_healthy
healthcheck:
test: nc -zv kafka1 9092 || exit 1
interval: 5s
retries: 25
labels:
tag: conduktor
kafka2:
hostname: kafka2
container_name: kafka2
image: confluentinc/cp-kafka:latest
ports:
- 19093:19093
environment:
KAFKA_BROKER_ID: 2
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2801
KAFKA_LISTENERS: INTERNAL://:9093,EXTERNAL_SAME_HOST://:19093
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka2:9093,EXTERNAL_SAME_HOST://localhost:19093
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL_SAME_HOST:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
KAFKA_LOG4J_LOGGERS: kafka.authorizer.logger=INFO
KAFKA_LOG4J_ROOT_LOGLEVEL: WARN
KAFKA_AUTO_CREATE_TOPICS_ENABLE: false
depends_on:
zookeeper:
condition: service_healthy
healthcheck:
test: nc -zv kafka2 9093 || exit 1
interval: 5s
retries: 25
labels:
tag: conduktor
kafka3:
image: confluentinc/cp-kafka:latest
hostname: kafka3
container_name: kafka3
ports:
- 19094:19094
environment:
KAFKA_BROKER_ID: 3
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2801
KAFKA_LISTENERS: INTERNAL://:9094,EXTERNAL_SAME_HOST://:19094
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka3:9094,EXTERNAL_SAME_HOST://localhost:19094
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL_SAME_HOST:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
KAFKA_LOG4J_LOGGERS: kafka.authorizer.logger=INFO
KAFKA_LOG4J_ROOT_LOGLEVEL: WARN
KAFKA_AUTO_CREATE_TOPICS_ENABLE: false
depends_on:
zookeeper:
condition: service_healthy
healthcheck:
test: nc -zv kafka3 9094 || exit 1
interval: 5s
retries: 25
labels:
tag: conduktor
schema-registry:
image: confluentinc/cp-schema-registry:latest
hostname: schema-registry
container_name: schema-registry
ports:
- 8081:8081
environment:
SCHEMA_REGISTRY_HOST_NAME: schema-registry
SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS: kafka1:9092,kafka2:9093,kafka3:9094
SCHEMA_REGISTRY_LOG4J_ROOT_LOGLEVEL: WARN
SCHEMA_REGISTRY_LISTENERS: http://0.0.0.0:8081
SCHEMA_REGISTRY_KAFKASTORE_TOPIC: _schemas
SCHEMA_REGISTRY_SCHEMA_REGISTRY_GROUP_ID: schema-registry
volumes:
- type: bind
source: .
target: /clientConfig
read_only: true
depends_on:
kafka1:
condition: service_healthy
kafka2:
condition: service_healthy
kafka3:
condition: service_healthy
healthcheck:
test: nc -zv schema-registry 8081 || exit 1
interval: 5s
retries: 25
labels:
tag: conduktor
conduktor-gateway-delegated:
image: conduktor/conduktor-gateway:3.0.4
hostname: conduktor-gateway-delegated
container_name: conduktor-gateway-delegated
environment:
KAFKA_BOOTSTRAP_SERVERS: kafka1:9092,kafka2:9093,kafka3:9094
GATEWAY_ADVERTISED_HOST: localhost
GATEWAY_SECURITY_PROTOCOL: PLAINTEXT
GATEWAY_FEATURE_FLAGS_ANALYTICS: false
depends_on:
kafka1:
condition: service_healthy
kafka2:
condition: service_healthy
kafka3:
condition: service_healthy
ports:
- 6969:6969
- 6970:6970
- 6971:6971
- 8888:8888
healthcheck:
test: curl localhost:8888/health
interval: 5s
retries: 25
kafka-client:
image: confluentinc/cp-kafka:latest
hostname: kafka-client
container_name: kafka-client
command: sleep infinity
volumes:
- type: bind
source: .
target: /clientConfig
read_only: true
labels:
tag: conduktor
networks:
demo: null
1. Start the Docker environment
Start all your docker services, wait for them to be up and ready, then run in background:
--wait
: Wait for services to berunning|healthy
. Implies detached mode.--detach
: Detached mode: Run containers in the background
docker compose up --detach --wait
2. Create a topic via Conduktor Gateway
- Kafka Client (Docker Compose)
- Apache Kafka Client
kafka-topics \
--bootstrap-server localhost:6969 \
--replication-factor 1 \
--partitions 1 \
--create --if-not-exists \
--topic orders
bin/kafka-topics.sh --create --topic orders --bootstrap-server localhost:6969
3. Produce a message to your topic
- Kafka Client (Docker Compose)
- Apache Kafka Client
echo '{"orderId":"12345","customerId":"67890","price":10000}' | \
kafka-console-producer \
--bootstrap-server localhost:6969 \
--topic orders
echo '{"orderId":"12345","customerId":"67890","price":10000}' | bin/kafka-console-producer.sh --topic my_topic --bootstrap-server localhost:6969
4. Consume a message from your topic
- Kafka Client (Docker Compose)
- Apache Kafka Client
kafka-console-consumer \
--bootstrap-server localhost:6969 \
--topic cars \
--from-beginning \
--max-messages 1 \
--timeout-ms 10000 | jq
bin/kafka-console-consumer.sh --topic my_topic --from-beginning --bootstrap-server localhost:6969
5. Next Steps: Configure an interceptor
This quick start shows the basics, demonstrating Conduktor Gateway can be interacted with like any other Kafka cluster.
However, the real value comes with configuring interceptors, which are pluggable components that augment Kafka by intercepting specific requests of the Kafka protocol and applying operations to it.
View demos that demonstrate how interceptors are used to satisfy specific use cases such as encryption, data quality and safeguarding your cluster with technical and business rules.